30,962 research outputs found

    Disordered two-dimensional superconductors: roles of temperature and interaction strength

    Full text link
    We have considered the half-filled disordered attractive Hubbard model on a square lattice, in which the on-site attraction is switched off on a fraction ff of sites, while keeping a finite UU on the remaining ones. Through Quantum Monte Carlo (QMC) simulations for several values of ff and UU, and for system sizes ranging from 8×88\times 8 to 16×1616\times 16, we have calculated the configurational averages of the equal-time pair structure factor PsP_s, and, for a more restricted set of variables, the helicity modulus, ρs\rho_s, as functions of temperature. Two finite-size scaling {\it ansatze} for PsP_s have been used, one for zero-temperature and the other for finite temperatures. We have found that the system sustains superconductivity in the ground state up to a critical impurity concentration, fcf_c, which increases with UU, at least up to U=4 (in units of the hopping energy). Also, the normalized zero-temperature gap as a function of ff shows a maximum near f0.07f\sim 0.07, for 2U62\lesssim U\lesssim 6. Analyses of the helicity modulus and of the pair structure factor led to the determination of the critical temperature as a function of ff, for U=3,U=3, 4 and 6: they also show maxima near f0.07f\sim 0.07, with the highest TcT_c increasing with UU in this range. We argue that, overall, the observed behavior results from both the breakdown of CDW-superconductivity degeneracy and the fact that free sites tend to "push" electrons towards attractive sites, the latter effect being more drastic at weak couplings.Comment: 9 two-column pages, 14 figures, RevTe
    corecore